Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Infect Dis ; 225(10): 1765-1772, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1853084

ABSTRACT

BACKGROUND: REGN3048 and REGN3051 are human monoclonal antibodies (mAb) targeting the spike glycoprotein on the Middle East respiratory syndrome coronavirus (MERS-CoV), which binds to the receptor dipeptidyl peptidase-4 (DPP4) and is necessary for infection of susceptible cells. METHODS: Preclinical study: REGN3048, REGN3051 and isotype immunoglobulin G (IgG) were administered to humanized DPP4 (huDPP4) mice 1 day prior to and 1 day after infection with MERS-CoV (Jordan strain). Virus titers and lung pathology were assessed. Phase 1 study: healthy adults received the combined mAb (n = 36) or placebo (n = 12) and followed for 121 days. Six dose levels were studied. Strict safety criteria were met prior to dose escalation. RESULTS: Preclinical study: REGN3048 plus REGN3051, prophylactically or therapeutically, was substantially more effective for reducing viral titer, lung inflammation, and pathology in huDPP4 mice compared with control antibodies and to each antibody monotherapy. Phase 1 study: REGN3048 plus REGN3051 was well tolerated with no dose-limiting adverse events, deaths, serious adverse events, or infusion reactions. Each mAb displayed pharmacokinetics expected of human IgG1 antibodies; it was not immunogenic. CONCLUSIONS: REGN3048 and REGN3051 in combination were well tolerated. The clinical and preclinical data support further development for the treatment or prophylaxis of MERS-CoV infection.


Subject(s)
Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Coronavirus Infections/drug therapy , Coronavirus Infections/prevention & control , Dipeptidyl Peptidase 4/metabolism , Humans , Immunoglobulin G , Mice , Spike Glycoprotein, Coronavirus
2.
J Infect Dis ; 224(11): 1830-1838, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545972

ABSTRACT

BACKGROUND: Elucidating the relationship between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and clinical outcomes is critical for understanding coronavirus disease 2019 (COVID-19). METHODS: The SARS-CoV-2 levels were analyzed by quantitative real-time polymerase chain reaction (RT-qPCR) of nasopharyngeal or oropharyngeal swab specimens collected at baseline, and clinical outcomes were recorded over 60 days from 1362 COVID-19 hospitalized patients enrolled in a multicenter, randomized, placebo-controlled phase 2/3 trial of sarilumab for COVID-19 (ClinicalTrials.gov NCT04315298). RESULTS: In post hoc analyses, higher baseline viral load, measured by both RT-qPCR cycle threshold and log10 copies/mL, was associated with greater supplemental oxygenation requirements and disease severity at study entry. Higher baseline viral load was associated with higher mortality, lower likelihood of improvement in clinical status and supplemental oxygenation requirements, and lower rates of hospital discharge. Viral load was not impacted by sarilumab treatment over time versus placebo. CONCLUSIONS: These data support viral load as an important determinant of clinical outcomes in hospitalized patients with COVID-19 requiring supplemental oxygen or assisted ventilation.


Subject(s)
COVID-19 , Viral Load , COVID-19/diagnosis , COVID-19/mortality , Humans , Nasopharynx/virology , Oropharynx/virology , Respiration, Artificial , SARS-CoV-2
3.
Bioanalysis ; 13(24): 1827-1836, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1506143

ABSTRACT

Aim: In response to the COVID-19 pandemic, Regeneron developed the anti-SARS-CoV-2 monoclonal antibody cocktail, REGEN-COV® (RONAPREVE® outside the USA). Drug concentration data was important for determination of dose, so a two-part bioanalytical strategy was implemented to ensure the therapy was rapidly available for use. Results & methodology: Initially, a liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) assay, was used to analyze early-phase study samples. Subsequently, a validated electrochemiluminescence (ECL) immunoassay was implemented for high throughput sample analysis for all samples. A comparison of drug concentration data from the methods was performed which identified strong linear correlations and for Bland-Altman, small bias. In addition, pharmacokinetic data from both methods produced similar profiles and parameters. Discussion & conclusion: This novel bioanalytical strategy successfully supported swift development of a critical targeted therapy during the COVID-19 public health emergency.


Subject(s)
Antibodies, Monoclonal/analysis , COVID-19/therapy , Chromatography, Liquid/methods , Mass Spectrometry/methods , SARS-CoV-2/immunology , Antibodies, Monoclonal/therapeutic use , COVID-19/virology , Electrochemical Techniques , Humans , Luminescence
4.
Anal Chem ; 93(38): 12889-12898, 2021 09 28.
Article in English | MEDLINE | ID: covidwho-1379296

ABSTRACT

REGEN-COV is a cocktail of two human IgG1 monoclonal antibodies (REGN10933 + REGN10987) that targets severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and has shown great promise to reduce the SARS-CoV-2 viral load in COVID-19 patients enrolled in clinical studies. A liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS)-based method, combined with trypsin and rAspN dual enzymatic digestion, was developed for the determination of total REGN10933 and total REGN10987 concentrations in several hundreds of pharmacokinetic (PK) serum samples from COVID-19 patients participating in phase I, II, and III clinical studies. The performance characteristics of this bioanalytical assay were evaluated with respect to linearity, accuracy, precision, selectivity, specificity, and analyte stability before and after enzymatic digestion. The developed LC-MRM-MS assay has a dynamic range from 10 to 2000 µg/mL antibody drug in the human serum matrix, which was able to cover the serum drug concentration from day 0 to day 28 after drug administration in two-dose groups for the clinical PK study of REGEN-COV. The concentrations of REGEN-COV in the two-dose groups measured by the LC-MRM-MS assay were comparable to the concentrations measured by a fully validated electrochemiluminescence (ECL) immunoassay.


Subject(s)
COVID-19 , Antibodies, Monoclonal , Chromatography, Liquid , Humans , SARS-CoV-2 , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL